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ABSTRACT

Optical beam pointing is a critical topic in the study of Directed Energy Weapons
Systems. One of the main operational concerns with optical beam pointing is the effect of small
vibratory motion, defined as jitter. Understanding jitter is important for minimizing the effect it
has upon a directed energy beam’s intensity at its target. In this project, Lagrange’s equations of
motion are derived for a visco-elastic, point-supported plate containing discrete masses, which is
representative of an optical platform. The mechanical response of the optical platform is sought
for free vibration, impact loading and the response imparted by two inertial actuators. All three
of these responses are then analyzed with and without damping. A solution of these equations
contains information pertaining to the plate’s amplitude and frequency, analyzed in both time
and frequency domains, which together computes the effect of jitter on the intensity of a directed

energy beam at the target.

Keywords: jitter, Lagrange’s equations, viso-elastic, actuators
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NOMENCLATURE

A = amplitude

c = damping coefficient

Cer = critical damping

E = Elastic modulus (Young’s modulus)
Hz = cycles per second (Hertz)

Ix lyys lxy,... = mMass moment of inertia

k = stiffness coefficient

m = mass

N = Force (Newton)

P = matrix of eigenvectors

Pa = Force per unit area (Pascal)

R = Rayleigh’s dissipation function

r(t) = displacement in modal space with respect to time
S = transformation matrix from modal space to original space
t = time

T = Period of oscillation

T = Kinetic Energy

C = damping ratio

\% = Spring Energy

4 = damped natural frequency

On = natural frequency

i) = phase



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Directed energy systems have eluded researchers and engineers for decades due to the
vast difficulties ranging from the basic physics of the system to modeling and system design.
Advances in laser and control systems have proved fruitful towards solving these problems.
Attention is now turning to other issues that affect the directed energy system. One such
challenge is to gain a better understanding of induced structural vibrations on the mechanical
response of the structure that contains the directed energy system. This vibration, termed jitter,
has a measurable effect on the accuracy and intensity of the laser at its target. A model capable
of simulating the motion of an optical platform in various scenarios would greatly assist in the
understanding of jitter effects and the mechanics behind the structural support system of the

laser.

1.2 Background

The optical laser system can be modeled as a multiple degree of freedom rigid body with
attached discrete masses supported on visco-elastic springs. One approach is to model it as a
flexible body and, due to the support conditions, include rigid body modes. Work on the
vibration of deformable plates is mature and only an overview is presented here.

Cox and Boxer [1] provided one of the early contributions to this topic and discussed the
vibration of a point supported plate at its corners and free edge boundaries elsewhere. Both
rotary inertia and shear effects were neglected for the plate. A finite difference approach was

used to solve the governing differential equation, and provided mode shapes and frequencies for



both square and rectangular plates. Amba-Rao [2] studied the vibration of a simply-supported
rectangular plate carrying a concentrated mass and presents a closed-form solution for the
frequencies and mode shapes. To develop the formulae for the frequencies, the transverse
displacement was represented as a double infinite sine series. Kerstens [3] incorporated a modal
constraint method to solve the problem of vibration of a rectangular plate supported arbitrarily.
The modal constraint approach used the principle of minimum potential energy, which included
virtual work done by homogeneous boundary conditions. The point supports were represented
through the virtual work by a homogenous boundary condition formed by finite constraints as
point supports. A Lagrange multiplier was used to represent the unknown forces. The use of the
Rayleigh-Ritz method continues to be a common approach for solving the eigenvalue problem
associated with plate vibration. Of particular interest was the selection of basis function used in
the analysis. Lee and Lee [4] incorporated a new class of admissible functions to study the
vibration of elastically point supported plates. The basis function corresponded to a similarly
supported beam under point loads. Singularity functions were used to completely describe the
equation defining the elastic curve. Normalized frequencies were presented for a plate simply
supported on all sides and as a function of support location as well as elastic support stiffness.
Kim and Dickerson [5] incorporate orthonormal polynomials as the basis functions in the
Rayleigh-Ritz method to study the vibration of point supported plates with a combination of
simply-supported and clamped edge conditions. The orthronormal set was constructed using the
Gramm-Schmidt process. Kocaturk et al. [6] considered the dynamic response of a thin
orthotropic plate supported on viscoelastic supports, which all had stiffness and damping
properties. The plate was subjected to harmonic input at its center and supported added masses.

The arrangement of the masses was placed symmetrically along the diagonals of the plate. A
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Ritz method was used to compute the eigenparameters presented in the Lagrange’s equation of
motion. Results were presented for several material constituents and considered symmetric
modes of vibration consistent with geometry. The authors also presented results for the force
transmissibility as a function of plate material properties and added mass.

Of particular interest was experimental work that had been done in this area of
investigation. Although not as voluminous as numerical and analytical work, several
contributions were noteworthy in literature. Nieves [7] et al used laser interferometry to identify
the flexural vibrations of thick isotropic plate. The technique was said to consist solely of out-
of-plane displacement flexural modes. Analytical results from the Ritz method were used as
comparisons for accuracy. A Mindlin plate theory was the basis for the analytical study
presented. Lee and Kam [8] considered the effect of elastic-edge supports on the vibration of
composite plates as a means of determining the mechanical properties of a plate. Impulse data
provided the necessary frequencies to extract the mechanical properties.

Rigid body mechanics offered a much more suitable alternative in light of design,
fabrication and construction of mounted systems aboard ships and aircraft. In this approach,

kinematic equations predicted motion leading to an understanding of the vibration response.

1.3 Approach

The analysis of a vibrating system usually involved mathematical modeling, derivation of
the governing equations, solution of the equations, and interpretation of the results. A brief
summary of each step follows. More detailed descriptions are included in chapters (2-6).

Step 1: Mathematical Modeling
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The purpose of mathematical modeling is to represent all the important features of
the system for the purpose of deriving analytical equations governing the system’s
behavior. The mathematical model may be linear or nonlinear.

Step 2: Derivation of Governing Equations

Several approaches are commonly used to derive the governing equations of
motion. Among them are Newtonian Mechanics, Hamilton’s Principle, the Principle of
Virtual Work, and Lagrange’s Equation. When only single degree systems are
considered, Newton'’s law is useful, but in more practical problems with many degrees of
freedom, energy considerations can be combined with the concepts of virtual work to
produce Lagrange’s equations. Lagrange’s equations provide an energy-based alternative
to summing forces to derive equations of motion and are therefore used in this project.

Step 3: Solution of the Governing Equations

The equations of motion must be solved to find the response of the vibrating
system. Depending on the nature of the problem, one of the following techniques may be
used to find the solution: standard methods of solving differential equations, Laplace
transform methods, matrix methods, and numerical methods. The resulting problem for
the vibration of the rigid problem is an eigenvalue problem. Modal analysis is one
approach to solve the associated eigenvalue problem using vector transformations.

Step 4: Interpretation of the Results

The solution of the governing equations gives the displacements, velocities, and

accelerations of the system’s various masses. These results can be analyzed for possible

design implications. Accuracy of a model is determined by how well the solution of the
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governing equations of motion predict the observed behaviors of the system presented in

experimental results.

1.4 Obijectives

The objectives of this study were as follows:

1. to model the optical platform as a rigid plate supported by elastic springs containing
discrete masses

2. to determine an exact differential of motions representing the kinematic model

3. to determine its mechanical response for free vibration, impact analysis, and forced
vibration.

4. to incorporate MATHEMATICA as the computation tool for analysis of the mechanical

response-based method to analytically solve for the equations of motion
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CHAPTER 2

MODELING

2.1 Introduction

This chapter introduces a brief overview of methods available to develop the equation of
motions for rigid point supported plates in order to provide a framework of vibration; that is, to
represent the physical problem mathematically. Differential equations governing the forced
vibration of a rigid point supported plate were then developed using Lagrange’s equation. By
defining the plate’s motion in terms of generalized displacement parameters, one captured all six
degrees of freedom in terms of three translations and three rotations.

Methods to represent or model physical problems all have their roots in dynamic
equilibrium or Newton’s 2 Law. For rigid bodies, two vectors equations given as

D> F =ma,
ZMG =lha, (2.2)
where p takes on indices af y, or z. Here a; is the acceleration at the center of mass, m is the

mass, }is the mass moment of inertia about tHeamis, andy the angular acceleration about the
p" axis. As the system became more complicated, establishing the vector required relationships
in Newton’s approach became increasingly difficult and required a more concise approach.

As an alternative to this vector-based formulation, the method of principle virtual work
was a scalar-based approach providing a shift in formulation from a Newtonian to a Lagrangian
approach. Problems in dynamics and vibration required introducing d’Alembert principle, since
the principle of virtual work was essentially a variation principle for problems in statics

coordinates used to define the degrees of freedom for the system. Stated simply
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The total work performed by the effective forces through infinitesimal virtual

displacements compatibl e with the system constrainsis zero.
and mathematically is represented as

> (F - b)r =0 @2

In equation 2.20r;is a virtual displacement compatible with the constraints on the system.
When deriving equations of motion, independent coordinates were preferred over system
position variables, which lead to the definition of generalized coordinates and Lagrange’s
Equations of Motion. A complete derivation of Lagrange’s equations can be found in [9]. Here
it is stated as
d(dT | dT L OR K oV
a(a—q]‘a—m—q*a—qzq @3)
where T is the system’s kinetic energy, V, the system’s potential energy, and R is defined as
Rayleigh’s dissipation function and represents energy loss due to damping.;'Atse q

generalized displacements angs@re the corresponding generalized forces. The term

generalized is used to described translations or rotations as well as forces or moments.

2.2 Kinematic Model Development

Lagrange’s equation of motion was the preferred approach to develop the differential
equations of motion for the point supported plate. To do so required a definition of the
generalized displacements, and provided the starting point of kinematic analysis.

Figure 2.1 shows the experimental setup of the optical platform and all of its required
instrumentation. Two inertial actuators were mounted to provide forced motion in the vertical
direction as well as to create angular rotations about the three cartesian axes. As a consequence

of the induced motions, displacements in the x and z directions were produced and accounted for
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in the kinematic model. Other elements included mounted brackets for optical sensors, laser
beam, and sensors themselves. Each element added mass and hence affected the mechanical
response of the optical platform system. Vibration isolators provided a mounting base for each

of elastic four springs.

Figure 2.1: Experimental Setup

As such, the system was modeled as an elastically point supported plate containing discrete
masses. The platform was taken to be a rigid body, which simulated the construct of the actual
system in operation.

The developed kinematic model consisted of superimposed displacement in the x, y, and
z directions. Three two-dimensional representations were used to develop the total displacement
expressions u{y,z}, v{x,z}and w{x,y} for the system consisting of a rigid platform and any
number of discrete masses, depicted below as'timeslsses. The cartesian coordinate system
had been located at the geometric center of the plate, its centroid, and provided the means

necessary to establish a relative position vector expression to locate movement in terms of
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displacements given by {uvo, Wo} and angular rotations given b¥y4 6y, 6;}. The procedure
used to develop the displacement expression is presented in equations (2.4) through (2.9). First
consider figure 2.2, which shows kinematics relationships for the x-y plane. All terms were
considered positive. The centroid displaced pgnd \, which represented the translation of
the center of gravity. In this plar,represented a positive rotation, and elements located in the
positive x-y quadrant experienced displacements given by

M, ={ X—xCos(8,) —ySn(6,)} |+ x3n(8,) -(y-yCos(6,))} j (2.4)

Combining translations and rotations provided

. ={U +x-xCos(8) ~ySn(8,)}i H{ v, +xSn(6) ~(y-yCos(6,)}j (2

Figure 2.2: Free Body Diagram in X-Y Plane
The amplitude of motion experienced by the plate and its discrete elements were on the order of

micrometers and micro-radians. Using a small angle assumption resulted in

r_k :{ uO - yez} IA +{V0 +X (ez)} I (26)
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Referring to figure 2.3 and making similar assumptions of displacement and rotation amplitudes,
the position vector in the y-z plane was computed as
fo ={Vo ~ 26} | H{w, +y 6,1k 2.7)

The final contribution was determined by referring to figure 2.4, which represented motion in the
x-z plane. This became

r, ={u, +x+ ZHY}f+{WO—x6y+z}I2 2.8)
The total position vector now was determined by summing equations (2.5) to (2.8) producing

Fo=uyz8i +vx 2t ] +wWx vtk (2.9)
where

U(Y.2.t) = Uy (t) + 26, (t) - Y6, (1) 2.10)
V(X,zt) =v,(t) - 28, (t) + X6, (t)
W(X, y,t) = wo (t) — X8, (t) + y&, (1)

Care was taken to not account for contributions more than once.

Figure 2.3: Free Body Diagram in Y-Z Plane
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Equation (2.10) is the displacement equation required for Lagrange’s equation.

Figure 2.4: Free Body Diagram in X-Z Plane

2.3 Dynamic Model Development

Figure 2.5 shows a planar view of dynamic model that represented the optical platform.
The actual system had two mounted actuators oriented 45° relative to the horizontal. Each
inertial actuator had been modeled as an equivalent mass-spring-damper system with gtiffness k
and damping coefficientic Here ny,was the portion of the actuator’s mass in motion and
MeaseWas the remaining mass for the actuator. Discrete masses were represented] hyatsee k
Experimental testing of the system’s support springs revealed that, although geometrically
similar, measured spring stiffnesses could vary by as much as 30%. To account for this

variation, spring stiffnesses and damping coefficients were all labeled differentnalsek
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Figure 2.5: Side view of a Platform with Discrete Mass and Actuator
Expression for the kinetic energy, potential energy and Rayleigh Dissipation function for

each inertial actuator were given by

T

actuators

1 : : 1 , '
= E msl(u321 + Vszl) + E my, (VSZZ + WSZZ) (2.12)

V.oiors = %kL(l Ug =0 Vg 2)) 2H vy -V Vg, 2) 2+ Wy, 2z D]? (2.12)

Pl Yo 2 e Y 2 T e W 2]
Recuators = E(Kl Uy —{U vy, zh ’ £ Va ¥ yq 29 ? +W Vg Zy}) 2]

1 i 2 . 2 . . 2
+ECL2 {J Yoo ZSL -( Vs2 _{/ Yz Zs}) +( Wso _V\{ Ysz ZSZ}) ] (213)

and expressions for the kinetic energy, potential energy, and Rayleigh’s Dissipation function for

the plate were given as
_ 13 W2, .2 .2 1 W2 2 .2
_E;mi(ui TV +W )+§III(U| +V, 7+ )dm

4
:%Zci (2 +v.2 +w?) (2.14)
i=1

4
v :%Zki (Ui2+Vi2+Wiz)
=
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Substitution of equations (2.12) through (2.15) into (2.3) yielded the coupled equations of motion

represented in matrix form as
[ms](4x4) [O] (4x6) {qs} (4x1) + [Cs] (4x4) [Cps] (4x6) {qs} (4x1)
[0] 6xay  [M,] 6xs) {qp}(sm [Col 6y [Cplisxs) {q p}(6><1) (2.15)
+ { [ks](4x4) [kps] (4><6):| {qs}(4x1) — {{Qs}(ml)}
[ksp] (6x4) [ kp] (6x6) {qp}(exl) {0} (6x1)
The explicit equations were quite lengthy and can be referenced in Appendix A -1 and appendix

A-2, which provide sub-matrices used in eqn.(2-15). The above subscripts s and p in egn. (2.16)

correspond to the shaker and plate, respectively. Also, the vectors of generalized coordinates are

defined as
u0
usl VO
Vsl WO
Qs = dp,J =
{a.} v {a,} 6. (2.16)
W, 6’y
6,

This set of equations is coupled both statically and dynamically, representing damped forced
vibration analysis. Initial condition must be appended to eqn (2.15), which consisted of initial
displacement and initial velocities.

Equation (2.15) was specialized based upon the type of vibration analysis investigated.
Initial conditions can also be presented. For free damped vibration analysis, eqn. (2-15) reduced
to

. . 2.17
[mp] (6x6) {qp}(exl) +[Cp] (6x6) {q P}(exl) +[ kp] (6x6) {qp}(exl) :{O} (6x1) ( )
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with initial conditions of

U, (0)
Vo (0)

_ W (0) 1o
{qp}_ gx (O) {qp}_
g,(0)
g,(0)

(2.18)

O O O O O O

Although initial velocity was possible, only displacement conditions were presented to reflect the
reality of inducing such initial conditions in a laboratory setting. Equation (2.17) also governed

impact analysis. However, the accompanying set of initial conditions were

0
Vo (07)

{a,}=

1L 0
=150
0
6.0)

o O O O O O

These initial conditions were computed from changes in both linear and angular momentum of

the plate just before impact and immediately after impact, given by

Fdt = mv(0") - mv(0")

S e, 3

M, dt=1,60)-1.6,0)

(=R S—]

(2.19)

o

M,dt=1,68,(0")-1,6,(07)

o

The impact location did have an effect on the initial conditions. A plate impacted in its center

resulted only in changes in linear momentum and not angular momentum.
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Finally, steady-state forced vibration analysis for the system was considered. No initial

conditions were required.
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CHAPTER 3
MODAL ANALYSIS

3.1 Modal Analysis

In this chapter an overview of the solution strategy, modal analysis, is presented and used
to solve the mechanical response in light of the complicated structure of the governing equations.
The equations of dynamic equilibrium were coupled both statically and dynamically and, with
the presence of damping, did not render a decoupled system unless certain conditions existed
between the stiffness, damping and mass matrices.

There were many ways to decouple eqn. (2.15) based upon the existing type coupling

construct. Consider the two-degree of freedom, coupled system, given by

{mu mz}{&}{cu QZH&}{M klz}{xl} ={Fl}
m, m, (X, Ci, Cy X% k12 kzz X, Fz (3.1)
or in matrix form as

[ Hm}x[+]E X + K % ={F} (3.2)
Now simplify the equations to consider an undamped problem witk my1, = 0, a system
coupled by virtue of the stiffness elements only. Since the mass matrix is now diagonal, a
coordinate transformation, defined as

1 (3.3)
GERES

produces
R R (3.4)
[ ImIm{?}d FK t tq ={F}

1

Pre-multiplying eqn.(3.3) bym] 2 yields
[ 1 & +[KK{ 6} ={F} (3.5)
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where

N[

JECEC L
IECRCLE 3.6)
B 40 (A
In eqgn. (3.5),[|2] Is the mass normalized stiffness matrix and [l] is the identity matrix. The
modal transformation matrix is accomplished by determining the matrix of eigenvectors
corresponding to eqn. (3.5), identified here as [P], defining a modal coordinate system {r}
through the transformation of {q} = [P]{r}, and incorporating this transformation into eqn. (3.4).
Doing so produces

[0 FC 1} + 080 FC 1} =(F) (37)

and pre-multiplying by [P]yields a decoupled system of equations of

{1} +[K{ 1} ={F} (3-8)
where

[K] =[ PI"[KI[P] (3.9)

{F} =[PI"{F}

Eqgn (3.8) was solved directly. The solution to the required problem was obtained after the
solution in modal space was transformed back to the original coordinate system using the modal
transformation given by
{ xd9{r} (3.10)
where .
[ =[r 7P| (3.11)
Now consider the un-damped problem, but one that is coupled both statically and

dynamically; that is, one with fully populated mass and stiffness matrices. Using the
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transformation defined through eqn. (3.3) is not the most efficient method for this type of
problem. Rather, a Cholesky Decomposition is the preferred strategy.

The Cholesky Decomposition, L, produces a lower triangular matrix that satisfies the
matrix product of [m] = [L][L]. Most of the context presented will hold for this coordinate
transformation, defined as

{4 % (3.12)

which produces
[ Im Py bR UT4q={F) (3.13)
Pre-multiplying eqn.(3.7) byL] ™ yields
[0 &+ @ ={F} (3.14)
where
[0 0 TmL]™

[ =[ UKL

B 40%F (3:15)

The eigenvector matrix [P] can now be determined, and the modal transformation matrix [S]
required is defined through

{ x4 3{n (3.16)

where

[ =[L]7P] (3.17)
[97=[PTIL]

Damping complicated the process in several ways. First, it was challenging to measure, and

secondly, with damping present, there were no assurances that the matrix of eigenvectors would
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diagonalize the damping matrix, thus decoupling the system. Caugley and O’Kelly [13] have

shown exactly that.

[ K mT¢dim™K]
[ M kT¢dKm] (3.18)
[ M ¢TH K Im]

Whenever eqn. (3.18) does not hold, then a proportional damping model is recommended in
which the damping matrix [c] can be expressed as a linear combination of the mass and stiffness
matrix gven by

[d =a M] +AK] (3.19)
Constants. andp were selected to produce a desired damping ratio, based upon experimental
results or design considerations.

Since the damping is mode dependent, the damping ratio is given as

(3.20)

-0 B
T2
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CHAPTER 4

FREE VIBRATION

4.1 Introduction

This chapter presents the free vibration analysis of the system. Equation (2.17) and
(2.18) were solved based upon the discussion in chapter 3. Required in the analysis were all of
the system properties. The mass or the platform and discrete elements were weighted and
recorded. Data from the manufacturer of the support springs indicated the same spring stiffness.
However, experimental results for the spring stiffnesses indicated stiffness coefficients that
varied as much as 30 percent. Free vibration case studies were investigated, which vary spring
stiffness, discrete mass amount and location, and in the case of damping, damping ratios. Target
displacement plots were plots that map the plate’s motion onto a plane located a set distance
away from the center of the plate, and presented a visual viewpoint of the platform’s local
motion. All results computed herein were performed using MATHEMATICA®.

Figure 4.1 shows the topology of stiffness and masses used in the vibration studies. The
coordinate system was placed at the centroid. The plate had geometry of 36 in x 36 in x 2 in.
with a density of 0.016 Ib/fn The springs were mounted at fixed coordinates as listed in Table

4.1.
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Figure 4.1: Mass, Stiffness, and Damping Coefficient Distribution

Parametric evaluation of the effect of spring stiffness, discrete mass composition and discrete
mass location values were established in Tables 4.1 through 4.4. Table 4.1 shows the fixed
location of the support springs while Table 4.2 presents the spring stiffnesses used. Table 4.3
presents the discrete masses used in the study, and Table 4.4 shows how the masses were
distributed on the plate. A systematic notation to identify what type of vibration was considered,
the value of stiffnesses used, the location of the discrete masses, and the amount of each discrete

mass is given as

v - K - M - L
- ——

. . —_ —_
Vibration Type  giffness Case Mass Case Mass Location

where V identifies the type of vibration problem as FR for free vibration, IM for impact analysis
and FF for forced vibration. For example, IM-Kl,-L3 identifies an impact analysis using
equal spring stiffnesses with equal masses distributed randomly over the plate’s area. In the case

of no added mass, the mass location index was omitted and would appendg &s. V-K



Table 4.1 Spring Coordinate Location
Spring Cartesian Coordinates
Number| x (in) | y (in) z (in)

1 17.25 -1 17.25
2 -17.25 -1 17.25
3 -17.25 -1 -17.25
4 17.25 -1 -17.25
Table 4.2 Spring Stiffnesses
Spring Case Study
Stiffness (Ib/in)| 1 2 3 4 5
Ky 115| 115|115 110/| 115
Ko 115| 110| 115]| 110| 110
ks 115| 110|110 115| 120
Ky 115| 115|110 115| 100

Table 4.3 Discrete Masses

Case Study
Mass (slugs 1 5 3 Z 5 6
my 0.0 0.155| 0.155| 0.155| 0.078| 0.155
my 0.0] 0.155| 0.078| 0.155| 0.155| 0.078
mg 0.0| 0.155| 0.078| 0.078| 0.078| 0.0
my 0.0 0.155| 0.155| 0.078| 0.155| 0.233

Table 4.4 Discrete Mass Location

Location

Case

Study

(X1,21)

(X2,22)

(X3’ Zg)

(X41 24)

|1

(9.9)

(12,12)

(12,12)

(9.9

P

(-9.9)

(6,6)

(12,6)

(-12,12)

I3

(-9,-9)

(12,-6)

(6,6)

(-15,5

|4

(9"9)

(6,-12)

(6,12)

(6!'6)

29
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4.2 Free Vibration Analysis

Free vibration analysis was governed by eqns. (2.17) and (2.18). Results consisted of
natural frequencies, displacement and rotation results, and target plots for various types of initial
conditions. Initial conditions consisted of non-zero generalized displacements and zero
generalized velocities.

Figure 4.2 shows results for displacements and rotations for; AR Kvith an initial
displacement of 0.01 ft in the x-direction only. Natural frequencies of this case were
w1=m=5.464 Hz,03=5.478 Hz, 4= 9.094 Hzws= wg= 9.104 Hz. Modes 1 and 2
correspond to the in-plane modes, mode 3 is the transverse mode, mode 4 corresponded to the
yaw mode, and modes 5 and 6 corresponded to the rotational modes. The non-zero displacement

was u, € )and the only non-zero rotation wég(t) . These expressions were

Ut = () 2067 10 Sin[1.570857.203{] 9.970 1D Sin[1.5708 34.3343] (4.1)
6, = (t) 670 10 Sin[1.570857.203]6.2%0 I8 Sin[1.5708 34.3343]

z

Both motions were in-phase with each other.



05 1.0 1.5 20°°°
o5 . 0 1. .
1.0

Wo
ft
1.0

0.5

0‘5 1‘0 1‘5 2‘0 Secs
05 . . . .
1.0

[x%
rads
1.0
0.5
} } } Secs
05 0.5 1.0 15 0
1.0
Ly
rads
1.0
0.5
- - - - SecCs
O'SE 05 1.0 1.5 2.0
1.0
(3
rads
0.0010F1 | | | | [ ]
0.0005 ‘H"H\u “\‘A\AH‘\ i

| “‘Mw/““v
0.0005 | | 05 1.6 18] 2l sees

0.0010. | | | “ U |

31

Figure 4.2 Displacement plots for free vibration equal stiffnesses, no added masses.
with initial condition ofy0) = 0.01 ft.

Changing the stiffness case to case 5, or evaluatingsHR:Kor the same initial condition,

highlighted the effect of unequal spring stiffness and static coupling on the motion of the

platform. All displacements and angular rotations grew harmonically with the exception of

Ug(t). This induced motion exhibited a beating phenomena characterized by a slow variation in

amplitude with rapid oscillations.

Clearly based upon spring stiffnesses, two types of motions exist. The first is identified

as direct motion consistant with initial conditions and the second is indused motion based upon

system properties. Another noticeable result was that the natural frequencies sepafkated to

5.402 Hzw, = 5.404 Hz,w3=5.418 HZ,w,= 8.804 Hzms= 8.996 Hzmg= 9.202 Hz.
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Figure 4.3 Displacement plots for free vibration unequal stiffnesses, no added masses
with initial condition o§(@) = 0.01 ft.

Expressions for the displacements highlighted the coupling effects and were given as
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u, t =() 1702 10 Sin[1.570855.3206t] 1.281 10 Sin[1.570834.084t]
+ 6.288 10 Sin[1.5708 33.9414t} 2.39%10? Sin[1.5708 33.95631]
+3.120x10° Sin[1.5708 56.52041t}+ 1.300<10° Sin[1.5708 57.8158(]

v, t =¢) 662510 Sin[1.570855.3206t] 3.342 1D Sin[1.570834.084t]
~  2.420 10 Sin[1.5708 33.9414t} 9.19%<10* Sin[1.5708 33.95631]
~1.196¢10° Sin[1.5768 56.52041] -4.984x10° Sin[1.5708 57.8158(]

w, t = () 1692 10 Sin[1.570855.3206t] -4.158 1D Sin[1.5708 33.9414]
+  4.262 10 Sin[1.5708 33.9563(F 2.63%10”7 Sin[1.5708 56.5204] (4.3)
+1.30710° Sin[1.5708 57.8158(]

6, t =() 3.863“0 Sin[1.570855.32068 2.948 10 Sin[1.5708+33.9414f]
+ 2.508 10 Sin[1.5708 33.9563(}F 3.440<10° Sin[1.5708 56.204]
-2.931%10* Sin[1.5708 57.8158t]

6, t =() 8.299*10 Sin[1.570855.3206 4.99% 10 Sin[1.5708+33.9414]
5.009 10 Sin[1.5708 33.9563t} 1.44x10° Sin[1.5708 56.2041]
+6.23210° Sin[1.5708 57.81581]

6,t = () 3349 10 Sin[1.570855.3206t] -4.737 1D Sin[1.5708 33.94141]
- 1.567 10 Sin[1.5708 33.9563(} 6.57%107 Sin[1.5708 56.5204t]
+2.938x10* Sin[1.570857.8158(]

Figure 4.4 shows the results for initial conditions @fo) = 0.01 ft, y(0) = -0.01 ft and (0) =
0.01 ft, with all other initial conditions equal to zero, since it is more difficult to prescribe
angular position than displacements. Here notice thand vy move in-phase whilé, ando,

move in-phase.
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Figure 4.4 Displacement plots for free vibration unequal stiffnesses, no added masses
with initial condition o(@) = 0.01 ft, y(0) = -0.01 ft, w(0) = 0.01 ft

Below are target plots, which represent a two-dimensional projection of the motion of the
platform and gave an indication of how the motions increased with distance and provided a
Here the distance was 14 ft from the center of the

visual perspective of the platform’s motion.

plate. Figure 4.5a corresponded to FRM and figure 4.5b corresponded to FBHW ;.
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Figure 4.5 Target Plots for equal and unequal spring stiffness and no added discrete mass.

Adding mass reduced the natural frequency of the system, as well as the displacement
amplitudes. Increasing the mass at points not co-located with the centroid affected rotational
modes of vibration. Take, for example, the case identified as;HR-H_,, whichadded equal
discrete mass of 0.155 slugs at the center of each quadrant. The natural frequenaies wgre
=5.114Hzw3= 5.147 HZ,04= ©5= 9.104 Hz, andes= 8.672 Hz. Modes 1 and 2

corresponded to the in-plane modes, mode 3 was the transverse mode, mode 4 and 5 were the
rotational modes, and mode 6 was the yaw mode. Here there was a shift in higher rotational

modes. An interesting scenario was the case of unequal stiffness, with added unequal discrete
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masses not arranged in a symmetric pattern about the origin, as depicted bpWlR-A This
resulted in natural frequencies that were all unique giverwhy. 5.047 Hz®, = 5.055Hz,®m3=
5.0885 Hz,w,4= 8.324 Hzmws= 8.498 Hz, ande= 8.557 Hz. Displacement plots are shown in

figure 4.5, and its target plot is presented in 4.6.
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Figure 4.6 Displacement plots for free vibration unequal stiffnesses, added unequal discrete
masses with initial condition op{@) = -0.01ft
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Figure 4.7 Target Plot for unequal spring stiffness and added discrete mass.

4.3 Free Vibration, Damped Analysis

In this section, damping was included in the vibration analysis and represented using a
proportional damping model as presented in egn. (3.20). Initial conditions selected were similar
to those used previously. Several combinations of constamtdp were computed in order to
yield realistic damping ratios. Results presented in this section followed a pattern similar to the
results presented in the previous section.

Table 4.5 compares values of natural frequengylamped natural frequenaey, and
damping ratid, based upon proportional damping constardadp. Damping ratios of the
order of 1 to 2 % are realistic and provide a framework for selecting proportional constants. For

convenience these constants were taken to be 0.0007812 for damped free vibration, although any
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set can be chosen based upon performance and design considerations. These values provided a

maximum damping ratio of 2.23%.

Table 4.5 Natural Frequency, damped natural frequencyangidg ratio as function of
proportion constants andf
a =0.0125 a = 0.00625 a = 0.003125
Mode B =0.0125 B =0.00625 B =0.003125
On g ¢ On g C On g C

1 5464 | 4.842| 0.215 5464 5163 0.107 5464 53815 0.p537
2 5464 | 4.842| 0.215 5464 5163 0.107 5464 5315 0.0537
3 5478 | 4.853| 0.215 5478 5176 0.108 5478 5329 0.0538
4 9.094 | 7.291| 0.357 9.094 8.242 0.179 9.094 8.678 0.0893
5 9.104 | 7.291] 0.357 9.104 8.250 0.179 9.104 8.687 0.0894
6 9.104 | 7.297| 0.3577 9.104 8250 0.179 9.104 8.687 0.0894

a = 0.001562 a =0.0007812 a = 0.000390

Mode g =0.001562 g =0.0007812 g =0.000390

®n ®d 4 ®n g g ®n ®d ¢

1 5464 | 5.390| 0.0268 5.464 5427 0.0134 5.464 5446 0.0067
2 5464 | 5.390| 0.0268 5.464 5.427 0.0134 5.464 5446 0.0067
3 5478 | 5.404| 0.0269 5.478 5.441 0.0134 5478 5460 0.0067
4 9.094 | 8.888| 0.0446 9.094 8.992 0.0223 9.094 9.043 0.p111
5 9.104 | 8.898| 0.0447Y 9.104 9.001 0.0223 9.104 9.053 0.p111
6 9.104 | 8.898| 0.0447Y 9.104 9.001 0.0223 9.104 9.053 0.p111

The presence of damping in the vibration model resulted in a characteristic equation, which
contained complex roots. The displacement expressions presented in eqn. (4.4) reflected this fact
and were used to generate figure 4.8 for the case of;HR:K Here the plate was given an

initial displacement in the x direction only. Damped natural frequencies were givgn=a®4

=5.437 Hzwy3 = 5.442 Hzwg3 = 8.992 Hzmys = 046=8.708 Hz. Figure 4.9 is the target plot



39

and shows that the density of the plot trace became more concentrated near its origin as time

increased, which reflected the effect of damping.

U, t €) 2.987 10 € Sin[1.593456.560t]
+ 9.976 10° e ***** Sin[1.5578 34.1031t] (4.4)

6, &) 6.2%0 16 & Sin[1.593456.560t]
6.270 10" €48 Sin[1.5578+ 34.1031]
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Figure 4.8 Displacement plots for free vibration unequal stiffnesses, no added masses with initial
condition of ¥(0) = 0.01ft.
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Figure 4.9 Target plot for equal stiffness, no added discrete mass damped vibration.

If the spring stiffness case changed to case 5 or §R-Kkhe solution for the six generalized
displacements were given in egns. (4.5) and (4.6). The corresponding damped natural
frequencies were all distinct, with valueswf = 5.366 Hzwq2 = 5.368 Hzwg3 = 5.382 Hzmys

= 8.708 Hzmgs= 8.895 Hz,wqs = 9.907 Hz.

Ut = () X702 16°¢  Sin[1.593%54.7198] 1.281 1H &2 Sin[1.58433.8211]
+ 6.288 10 € Sin[1.5574 33.7158] 2.389 10 &°°" Sin[1.557433.7301]
+  3.22010%2 Sin[1.548455.8928} 1.30& 10°e ***" Sin[1.547957.159]

v, t =—() 6528 6°%% Sin[1.59354.7198] 3.342 1D & Sin[1.584283.8211]
~ 242010 %" Sin[1.5574 33.715%] 9.189 16 ¥*°* Sin[1.557433.7301]
~  1.%9690¥™ Sin[1.548455.8928]4.984 10% **** Sin[1.547957.15%]

w,t = () %692 £6°%  Sin[1.59354.7193]4.188 1D & Sin[1.557433.7154]
+ 4162 F°@  Sin[1.557433.7301] 2.689 10 ¥*** Sin[1.548455.8924]
+1.307%10 % ®**°* Sin[1.547957.15%]

(4.5)
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6.t = () 8.36310°% Sin[1.59354.719%] 2.940 10 ¥** Sin[1.557433.7155]
+ 2508 1%  Sin[1.557433.7361] 3.440 1D ¥*** Sin[1.548455.8928]
2.93%10% %% Sin[1.547957.159]

6,t = () 8.29916"%  Sin[1.593%4.7194] 4.997 10 ¥ Sin[1.557433.7154]

§.009 1%  Sin[1.357433.7361] 1.44110 ¥**? Sin[1.548455.8928]
+ 6.23210% ***" Sin[1.547657.154]

g,t = () 8.34910°% Sin[1.59354.719%]4.787 10 ¥** Sin[1.557433.715%]
- 557 1%  Sin[1.557433.7361] 6.57310 ¥** Sin[1.548455.892§]
+2.93%10 “e ***° Sin[1.547857.159]

(4.6)

Figure 4.10 shows the displacement as a function of time asaindp3 = 0.0007812. Bothgu

and \y were more dominant in respect to displacement magnitudes, sim@swn the order of

10°, while 0y, on the order of 16) was less significant when comparing the angular rotations.
The selection of constanisandf was based upon a desire to have a maximum damping

ratio of approximately 2%. Increasing the constants rdise@d maximum of 4% which

dampened out motions somewhat faster as shown in figure 4.12. There was a change in the

damped frequencies tey; = 5.037 Hzwg, = 5.3039 Hzmys = 5.052 Hzmgs= 8.610 Hzmys =

8.795 Hz, anabgs = 8.990 Hz.
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Figure 4.10. Displacement plots for free vibration, damped unequal stiffnesses, no added
discrete masses with initial condition @f@) = 0.01ft witha. = 0.0007812f = 0.0007812

Targe

Figure 4.11 Target Plot for unequal spring stiffness and no added discrete mass (damped

vibration).
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Figure 4.12 Displacement plots for free vibration unequal stiffnesses, added discrete
masses with initial condition ob(0) = 0.01ft witha = 0.001562 = 0.001562
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CHAPTERS
IMPACT ANALYSIS

5.1 Introduction

Before moving onto forced vibration, some results are presented for impact analysis.
Impact analysis had the same governing differential equations as free vibration, but here velocity
and angular velocity initial conditions were prescribed instead of displacements and angular
rotations. These conditions corresponded to a change in both linear and angular momentum due
to impulsive forces and moments, expressed in eqn. (2.19). The impact response depended upon
impact location and mass of the impacting hammer. Generalized displacement results are
presented for several impact points on the plate using and impacting hammer of about 10 Ib.
These results were generated for a plate with unequal spring stiffnesses, discrete masses arranged
arbitrarily, and damping, which is case IM-Kls-L4

To evaluate the initial conditions required the duration of the impact event and its

intensity. For a constant impact force, egn. (2.19) evaluates to

v = Faslt
6,(07) ==

(5.1)
6,(0) = M=t

I z

where K is the average impact force intensity, ads the time of the impact. For this

analysis the impact intensity of 10 Ib for a duration of 0.02 secs was used. Impact analysis does
not necessary start at time t = 0 secs. With the use of the kronecker delta fariti®delay

was readily incorporated. Table 5.1 provided locations where the impact would take place.

These locations were not unique and represented any number of combinations of coordinates
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where an impact could take place. Impact locations along the z-axis produced target plots that

were essentially vertical. The nomenclature introduced in chapter three for tracking vibration

cases is augmented here to track impact location. The new notation introdueges Fhe case

IM-K 5-Me-L4-P; specifies the impact point to correspond to that presented in table 5.1. All

parameters presented for damped analysis are maintained here.

2Nt

Table 5.1 Impact Location Placems
Location (%,21)
Py (0,0)
P, (18,0)
Ps (-18,0)

The case considered for impact analysis was BvWk-L4-P,. The initial conditions were

vo(0") = -0.0382848 ft/9),(0") = 0.0 rad/s ané,(0") = 0.0753376 rad/s. The solution of

egn.(2.17) was



Y (t) =(7.6899x107 e 3805 Sin[53,220 4(-0.5 + t)]
+2.4318x10 " 9394505 Gin[31,723 5(-0.5 + t)]
+7.6868x10 ° ®3913%05Y QinI3] 750 7(-0.5 + 1)]
+1.6105%10 g +0930%05*) Gin[52 341 9(-0.5 + t)]
+8.2506x10 e 12574050 gjn[53.109 8(-0.5+ )])J (t -0.5)

y (t) =(-9.3065x10 Be *13%4%05*0 gin[53,.220 4(-0.5 + )]
8.4358x10 e 2398405 gin[31.723 5(-0.5+ 1)] (5.2)
1.5038x10 ©° ®3991305) Qinr31 750 7(-0.5+ t)]
5.5969x10 "e H09B0X05 Gin52.341 9(-0.5 + 1)]
-2.8323x10 e +1257405*0 gjin[53,109 8(-0.5+ 1)])J (t -0.5)

W (t) =(6.8405x10 "e *13%4&03*0 gin[53.220 4(-0.5 + )]
1.8476x10 & 9398405 Gin[31,723 5(-0.5 + 1)]
+1.0800x10 * ®39913805+0 g3 750 7(-0.5 + 1)]
1.5808x10 ®e +9930%05*Y Gin[52 341 9(-0.5 + )]
+1.3300x10 e *1?57405*0 Gin(53,109 8(-0.5+ 1)])J (t -0.5)
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0, (t) =(-6.4761x 10° e +13%4805*0 Sin[53.220 4(-0.5 + )]
1.9894x10 e 9398440540 gjn[31.723 5(-0.5 + )]
+9.9589x1(Q © 3913805+ G371, 750 7(-0.5 + t)]
+1.3363x10 e 99°%%05* Gjn[52.341 9(-0.5 + 1)]
-7.511x10 e +1257405*Y gjn[53.109 8(-0.5+ 1)])J (t -0.5)

6, (t) =(-2.6473x10 ‘e ***%%5*) Sin[53.220 4(-0.5+ t)]
+ 1.7463x10 ‘& 93984505 Gjn[31.7235(-0.5+ t)] (5.3)
1.7869x10 © €3990 gin[31 750 7(-0.5+ 1)]
+ 1.0051x10 e +0930%05*) Gin[52 341 9(-0.5 + t)]
+ 1.6874x10 e %7405 gin[53.109 8(-0.5+ 1)])d (t -0.5)

8, (t) =(6.9201x10 ®e ¥ %5*Y gin[53.220 4(-0.5 + 1)]
-2.6982x10 % 939840540 Gjn[31.7235(-0.5+ 1)]
7.3369%x10 © ©39913%054) ginr31 750 7(-0.5+ 1)]

+ 1.3258x10 ®e +0%9%05) gin[52.341 9(-0.5+ t)]
+5.0184x10 e *1257405*) gin[53,109 8(-0.5+ 1)])J (t -0.5)

with the natural frequencies @f;= 5.0807 Hzn,= 5.0851 Hzwn3=5.1117 Hz,0na= 8.4179

Hz, ons= 8.5427 Hzwns= 8.5607 Hz, and the damped natural frequenciegef 5.0489 Hz,

®g2= 5.0532 Hzmy3=5.0847 Hzwqs= 8.3304 Hz,mqy5= 8.4526 Hz, andhgs= 8.4702 Hz.

Figure 5.1 presents plots of displacement vs. time. In these graphs, displacgrapdigsv

moved in-phase while angular rotatidhisand6, motions were in-phase with the magnitude of

0y. However 9, was two orders of magnitude smaller than either 6,. Figure 5.2 provides

the target plot for this case showing the effect of angular rotaijcarsdo, on this traced
displacement. Figure 5.3 and 5.4 and figures 5.5 and 5.6 are displacement-target plot sets for

impact locations atFand B, respectively.
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Figure 5.1 Displacement plots for impact unequal stiffnesses, added discreie~vit01562,
B =0.001562
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CHAPTER 6

FORCED VIBRATION

6.1 Introduction

In this chapter, forced vibration analysis of the platform system is presented. Unlike
previous results, the forcing function was constantly applied to the system, which produced both
a transient and steady state solution. Also unlike the previous discussions, the governing
equations of motion included representations of the forcing functions, depicted as inertial
actuators. This inclusion expanded the system of governing equations from six degrees to as
many as ten degrees of freedom. The equations of motion were solved for the steady-state
solutions since previous results captured transient results.

Two inertial actuators are typical for the optical platform, and each is modeled as a
second order system. These actuators were placed and oriented in such a way to generate in-
plane displacemenputransverse displacemeny and all three angular rotations. The forcing
function was represented as a single harmonic function suef{tas F,.Sn(at) or a linear
combination of multiple harmonic functions such as
F(t) = F,.Sn(w t) + F,Sn(w, t) + F,Sn(w, t). Both cases were considered here. Since the
problem was linear in nature, displacement solutions for the case of multiple frequency forcing
function were obtained through a superposition of the displacement solution at each forcing
frequency. Results presented here considered the case of unequal stiffenesses with added
discrete masses arbitrarily located on the plate.

Refer to chapter 4 on free vibration for an explanation of the systematic notation used
within this chapter to identify which stiffness, mass composition, and mass location cases are

used in each study. These variables follow the pattern outlined in tables 4.1 through 4.4.
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6.2 Forced Vibration Analysis

Forced vibration of the platform used two actuators whose forcing functions were given

by F, ¢)= 10Sn(75t)
F, ¢ )=10Sn(25t) (6.1)
Forcing function Kt) was oriented 45° relative to the horizontal, ap(d) Fvas oriented in the

vertical position only. The equations that governed steady-state forced vibration were given by
(2.17). These equations are shown in complete detail in Appendix A-1. A modal solution
approach was used to decouple the problem, solve it in modal coordinates, and transform it back
to the original coordinate system to obtain the solution of the original problem. The system
investigated was FF4Ms-L4. The constants andp used for the damping ratio were

0.0007812. With forcing functions given by egn. (6.1) and system properties given, the steady
state solutions consisted of natural frequencies,@E 4.9414 Hzwn,= 6.4366 Hzmn3=

7.2966 Hz,wns= 8.5514 Hz,w,5= 8.6176 Hzmns= 9.2568 Hz and damped natural of; =

4.9114 Hzwqo= 6.3855 Hzmy3= 7.2310,mg4= 8.4612 Hzmys= 8.5259 Hzmqys= 9.1511 Hz.

The displacement equations became



Ug(t) = 1.00406x16 Sin[0.0121293 -75 t] - 0.000321209 Sin[0.0240309 -75 {]
+1.31285x10 Sin[0.0349573 -75 ]-5.42389x1(®in[0.0617196 -75 1]
-9.55247x10 Sin[0.0637154 -75 t]+5.38026x$®in[0.0881979 -75 {]

+4.3727x106 Sin[0.0198073 +25 1]-5.81755x1®in[0.0198115 +25 {]
-5.26029x%10 Sin[0.0198166 +25 t]-1.62503x1(in[0.0239584 +25 t]
-0.0000139863 Sin[0.0248248 +25 1]-2.58145% 8In[0.0249298 +25 ]
+6.37135x10 Sin[0.0278009 +25 t]+0.0000994562 Sin[0.0316172 +25 t]
-0.0000191568 Sin[0.0555397 +25 t]+2.53003% 8N[0.0670112 +75 t]
-0.0000395334 Sin[0.0671549 +75 t]+3.24891% 8n[0.0673307 +75 t]

Vo(t) = 0.000279697 Sin[0.0121293 -75 t]+1.0076 1% Hn[0.0240309 -75 {]
-1.94145%16 Sin[0.0349573 -75 1]-2.69454x1(Bin[0.0617196 -75 {]
-8.67708x10 Sin[0.0637154 -75 ]-8.28308x£(®in[0.0881979 -75 {]
+0.0000409697 Sin[0.0198073 +25 t]+1.43775%8IN[0.0198115 +25 t]
+5.30289x10 Sin[0.0198166 +25 t]+2.50179x1®in[0.0239584 +25 {]
-1.27046x10 Sin[0.0248248 +25 t]-1.28244x%®in[0.0249298 +25 {]
-9.42197x10 Sin[0.0278009 +25 {]-3.11986x1®in[0.0316172 +25 {]
-0.00533642 Sin[0.0555397 +25 t]+0.0000237049 Sin[0.0670112 +75 {]

+9.77027x18 Sin[0.0671549 +75 ]-3.27522x1(Bin[0.0673307 +75 ]
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(6.2)

(6.3)



56

Wo(t)=-1.44417x16 Sin[0.0121293 -75 {]-1.82636xP®in[0.0240309 -75 ]
-0.0000923278 Sin[0.0349573 -75 ]-2.91666% 8In[0.0617196 -75 1]
+0.0000194523 Sin[0.0637154 -75 t]+0.000115661 Sin[0.0881979 -75 {]
-4.19896x10 Sin[0.0198073 +25 1]-2.37918x1®in[0.0198115 +25 t]
+5.15085x10 Sin[0.0198166 +25 t]-3.49338x£®in[0.0239584 +25 ] (6.4)
+0.000028481 Sin[0.0248248 +25 {]-1.38816% Bn[0.0249298 +25 1]
-0.0000448072 Sin[0.0278009 +25 t]+5.65496% 8n[0.0316172 +25t]
+0.0000275536 Sin[0.0555397 +25 t]-2.4295% Hn[0.0670112 +75 {]
-1.61678x10 Sin[0.0671549 +75 t]-3.18132x1®in[0.0673307 +75 {]
0,(t)= 4.60572x10 Sin[0.0121293 -75 1]-2.07747x$®in[0.0240309 -75 {]
+0.0000448641 Sin[0.0349573 -75 t]+7.71136%8N[0.0617196 -75 1]
+8.16241x18 Sin[0.0637154 -75 ]+0.000256036 Sin[0.0881979 -75 {]
+0.0000109739 Sin[0.0198073 +25 t]+8.90035%8IN[0.0198115 +25 ] (6.5)
-0.000013611 Sin[0.0198166 +25 t]-7.7332%BIn[0.0239584 +25 {]
+0.000011951 Sin[0.0248248 +25 ]+0.0000367015 Sin[0.0249298 +25t]
+0.0000217728 Sin[0.0278009 +25 t]+6.43246%8IN[0.0316172 +25 t]
-0.0000878739 Sin[0.0555397 +25 t]+6.34946%8N[0.0670112 +75 t]

+6.04827x16 Sin[0.0671549 +75 t]+8.40657x2®in[0.0673307 +75 t]
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By(t)=-2.82214x16 Sin[0.0121293 -75 t]+6.7708x2®in[0.0240309 -75 1]
+0.0000196566 Sin[0.0349573 -75 t]-8.9916% BIn[0.0617196 -75 {]
+0.0000263297 Sin[0.0637154 -75 t]+0.000111047 Sin[0.0881979 -75 {]
-1.41948x16 Sin[0.0198073 +25 t]+1.76317x1(®in[0.0198115 +25 {]
+1.40466x106 Sin[0.0198166 +25 t]-3.35401x$®in[0.0239584 +25 ] (6.6)
+0.0000385506 Sin[0.0248248 +25 {]-0.0000427947 Sin[0.0249298 +25 {]
+9.53946x16 Sin[0.0278009 +25 t]-2.09645x$®in[0.0316172 +25 1]
+5.38444x10 Sin[0.0555397 +25 t]-8.21303x1®in[0.0670112 +75 ]
+0.0000119817 Sin[0.0671549 +75 t]-8.67559% 8n[0.0673307 +75 ]
0,(t)= 4.69373x186 Sin[0.0121293 -75 {]-0.0000375903 Sin[0.0240309 -75 {]
+4.25126x18 Sin[0.0349573 -75 ]+1.42329xE®in[0.0617196 -75 {]
+0.000331645 Sin[0.0637154 -75 t]-0.0000274044 Sin[0.0881979 -75 ]
-0.0000150431 Sin[0.0198073 +25 t]+3.08941%8in[0.0198115 +25 {]
-0.0000113176 Sin[0.0198166 +25 t]+8.27713%8N[0.0239584 +25 t] (6.7)
+0.000485579 Sin[0.0248248 +25 t]+6.77404% HN[0.0249298 +25 ]
+2.06316x10 Sin[0.0278009 +25 t]+0.0000116391 Sin[0.0316172 +25 t]
-0.000089553 Sin[0.0555397 +25 1]-8.70387% BIN[0.0670112 +75 1]
+0.0000209942 Sin[0.0671549 +75 t]+6.9901% Bn[0.0673307 +75 ]
Although long and tedious, the solutions contained no more than seven combinations of the Sine
function at each frequency and a phase angle. These equations were plotted in figure 6.1. Most

notable was the slowing period of oscillation in displacemgiitand rapid oscillation iA(t).
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Figure 6.2 shows the same input information with the exception that the frequencies were
exchanged. With these changes it was possible to assess the effect of the actuator orientation on
the motion of the platform. By comparing Figures 6.1 and 6.2 it was seen that the actuator
oriented at 45° dominates the motion when forcing amplitudes were equal. Figure 6.3 shows the
displacement results using same frequency of 25 rad/s. In-plane displacgmeast ielatively

small when compared to the other two components. Also, rot&ti@mslo, were in-phase.
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Figure 6.1 Displacement plots with(ff = 10 Sin(75t) at 45°
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Figure 6.3 Displacement plots with(ff = Fx(t) =10 Sin(25t) at 45°

By considering that the forcing functions were linear combinations of harmonic functions, given

by

R0 =) A S 68)

it was possible to define
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F)=Y ASna]
= (6.9)

N
F(t) =) AySnwt]
i=1
Here N is taken as 7, all of the magnitudgsefjual, and random choices of frequency were
taken, which produced the following forcing functions

Ft <) 960 (599Fn (208)Sn (6459Sn (3509 Sn (4312 ¥ Sin (4708 )+ Sin (56231)]
Ft =() [ @109%n (QI7#Bn (24889Sn (32163 Sn (4199 ¥ Sin (4793 )+ Sin (6022t))]

Figures 6.4 and 6.5 show time history plots of forcing functigreng F.
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The solution process for this case merely required a superimposed solution in modal space and a

modal transformation back to the original coordinate system. The results were quite lengthy and

shown only graphically below in figure 6.6
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Figure 6.6 Displacement plot for multiple frequency forcing functions
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CHAPTER 7
CONCLUSION AND FUTURE WORK
This project studied the analysis of an optical platform modeled as an elastically point
supported plate containing discrete mass. The study consisted of free vibration, impact analysis
and force vibration. Both undamped and damped cases were considered, where the damped
cases were modeled using proportional damping.
1. Dynamic vibration equations of equilibrium were derived using Lagrange’s Equation.
2. Undamped and damped analysis was considered
3. Two types of motion can result — Direct motion due to initial conditions and induced
motion due to system characteristics. Induced motion resembles vibrational beating
— slow amplitude changes with rapid oscillations.
4. Equal spring stiffness results in harmonic motion, without beating phenomena
5. Unequal spring stiffnesses induce motion in other directions
6. Unequal spring stiffnesses separate modes of vibration
7. Added masses reduce frequencies
8. Target plot density is greater with equal spring stiff nesses than when unequal.
9. Explicit expressions for all kinematic variables are known, leading to computation of
velocities (linear and angular), acceleartions (linear and angular) at any point on the
plate.

10. All experimental results can be compared with analytical results

There are several ideas that can be considered to extend the work of this project.

1. Compare analytical results with experimental results



2. Understand strategy to distribute force intensity for multiple frequency case
3. Develop state space representation for future control applications

4. Incorporate modeling of devices such as fast steering mirror, etc.
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APPENDIX Al

EXPLICIT EQUATIONS

Al.1 Coupled Dynamic Equation for Inertial Actuators

d?u du

M sit dt o+ C dtS:L + Kslusl_ Ksl(uo (t) + Zsley (t) - yslez (t)) (All)
du,, (t de, (t) déz(t
_Csl( C(;t( ) + Zsl C;lt - ysl ( )) = Fs!x
2
M slt % + Csl d;/_tSl + Kslvsl - Ksl(vo (t) - Zslgx (t) + Xslez (t))
dv t dé.(t déz(t Al.2
_Csl( () Zsl (;()+Xsl ())stl ( )
t dt
M S0 40, Mo, = K ) - 26,00+ 1,6,
(dv 0 _, 98,0, 60, (AL3)
52 2 dt s2 dt
d*w, dw,
M s2t Tzz + Csz TZ + Klesl - Ksz (Wo (t) + y328x (t) - XSZHy (t)) (A1.4)
dw, (t) dé, (t) dé, ()
-C =+ - =F
SZ( dt ySZ dt XSZ dt ) s2z
Al.2 Coupled Dynamic Equations for Optical Platform
d?u, (t du, (t
™, +ZM +ZMsb) °”+(Zc ch.> °()+(ZK +Zk ) (1) +
_ _ = = _
_ d?6, (t)
(MpZ+ZMi4 +ZMS—sz +(ZC +ZC Zs.) +(ZKZ+ZK )By(t)—(MS)
i=1 i=1 i i i i .

OMY+3 Mo,y.) e(‘) EOCTEDARAES SO W I HRALAC

dt
t

Kslusl (t) + Csl
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(M +ZM +ZM )d VO(t)+(ZC ZCSI)dVO(t)+(ZK +st)vo(t)—
29()

M z+2Mz+ZM ) (Zc:z Zc 2,) %) (ZKuZK )60+ (aLg)

29 (t) da (t)

+(ZC>§ +ZC Xg)—2

stZ (t) - o
dt

(MY M %+ M)
i=1 i=1

dv, (t)
dt

+(ZKi>e +ZKgxs-)6’z(t)

- Kslvsl(t) _Csl

- Kszvsz (t) - Csz

M, +Z|v| +Z|v| N Wo(t)+(Zc ZCS,)d"Vo(t)+(ZK +Zk Y, () +

Z'V' y.+ZM Ys) a6, (t)+(ZCyI+ZC Ys) aé, (t)+(ZKM+ZK voe.m- (AL

29 4 4
M X+ZM >s+_ZMsxs) () (ZCX.+ZC k) 20 (ZK’”ZK %)0, (1)
— KWy, (1) = C, e (1) =0
dt

20 (t)

+(ZC(y. +z)+2c (v2 +2) 2%

(Lt LM+ 20+ 3 ML (v + ) S

(Z Ki (¥ +2) +Z Ks(Yx +25))6, () -

d*e,
ZM)(IyI+ZMS|XS|ys) (t) (ZC)(IyI+ZC

dt2 - y(t)_(zKiXiyi+ZKsixsiysi)9y(t)_

M2+ 3m7+ 3, 2) S0 - (chzcgzg)dv(‘) Kz YKz A

My + 2 M) SO 4 Sy + 3,y B (32 43 K, 2w -

(1 + XMz 43 M x2) 8 2"(‘) - exz w30z B (S Kixz + 3 Kok )00+

v, (1) o) _ 0
d dt

Kslzslvsl (t) + Cslzsl + KSZZSZVsz (t) + Cszzsz
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(t) dé (t)

+Z|V| (% +Z)+2M (x5 + 2)) +(ZC(X +Z)+ZC (X5 +23)———

(Z Ki(Xi *z )+Z Ksi(xsi + Zsi ))gy(t) -

(iMiXiYi"'iMsxgy dﬁ(t) (ZC y|+zc dedt(t)
(i Kixy, +i KsXgYs)0, () - (AL9)
(izij;,MiYiZi"'ngiygzs)d(izz(t) (IZ;,CM i ZC YsZs) dé(;t(t)
(iKiini-'-iKsjysizsi)ez(t)-’-
(M, 243 Mz +3M,2,)° ”°“)+<ZCz+chzs)d“°“)+(_zr< +Y K z)u (0 -
i +ZMS| si d WO(t) (ZC +chixsi)d\,\(l:;)t(t)_(ZKiXi+iKsiXsi)W0(t)_
Kslzslusl(t) + Kszxszwsz (t) - Cslzsl dUS1(t) + Cszxsz dWsZ (t) = O
dt dt
29 t dé,(t
(123,06 +4)+ 2 My 0 2 ) S A (3G 06+ 40)+ 3G, 0 +y2) )+
(Z Ki (X" +Y) +ZKQ (X + Y= ))E, (1) +
t t 4 2
(M5 3 M 3 M) °“+<20x+zc ) S+ (K + K w0+
(Al1.10)

(ZMiyi +ZMsiys.-)d;t°2(t) (ch. +Zc Ys) dUO(t) (ZKy. +ZK Ys )Uo (1) =

x2) (Zszchxsza 20 (szz+ZK X,2,)6,() -
(ZM y.z+ZMs.yszs) dtz( —(ZCy.zZC Vs 0 -(ZKiM+ZKS-yS-Zg)Hy(t)+
() dvsl(t)_ dv,,(t) _
Slyslusl(t) Kslxslvsl(t) KSZXSZ Z(t) +Cslysl dt Cslxsl dt CSZXSZ dt O
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APPENDIX A2

SUB MATRICIES

A2.1 Introduction

This appendix presents explicit forms of the matrices used. Recall that Lagrange’s
Equation provides a means of obtaining a system’s governing equations of motion, which in
matrix form become

[ Hm}x[+le X K % ={F} (A2.1)

Each matrix in egn. A2.1 is subdivided into four matrices,

{[ms]mm) [0] (4x) } {qs}(4x1) + [ [CS](4x4) [Cps] (4x6):| {qs}(4x1)
[O] (6x4) [mp] (6x6) {qp}(exl) [ Csp] (6x4) [Cp] (6x6) {qp}(gxl)
. { L PR L o } {{qs} (M)} _ {{QS}M} (2.16)

Kolow [Kolan ||0hon |~ 10} 0o
where [ms](m) is the mass matrix of the shakdns | 4, Iis the mass matrix for the plate, and
its discrete masseb;s]wm) is the damping matrix of the shakelrs, ] 4, IS the damping matrix

tha couples the motion of the plate and the shal{kg}‘( is the stiffness matrix of the shakers,

2Ax4)

[Kos] axs) IS the stiffness matrix which couples the motion of the plate and the sHakérs,, is

{qs}(4x1)

the stiffness matrix of the pIatJL,{.. }is a vector of the shaker and plate accelerations,

p}(le)

S}(4xl)

{{qs}m

PJ (6x1)

} is a vector of the shaker and plate velociti[e{{aq } is a vector of the shaker and

p } (6x1)

plate displacements, ang{%}(‘m)} is a vector comprised of the forces imparted by the shakers
(6x1)

onto the system.



The above defined matrices for the shaker are

[c,]=

[kl =

Here s1 and s2 stand for shaker 1 and 2 and t represents the portion of the mass of the shaker in

motion. The matrices that couple the motion of the shaker and the plate are

0

S

l=lel = €
- kslzsl
L kslysl

0 0 0
mg, O 0
0O m, O
0 0 m,
0O 0 O
cgy 0 O
0O c, O
0 0 c,
0O 0 O
kg 0 O
0 k, O
0 0 Kk,

0

kslzsl
0
- kslxsl

0

kszzsz
0
- ksZXSZ

- ksZ ysZ
0

0
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The matrices that govern the motion of the plate are



0 0
N
m,+>. m 0
i=1
0 m+3m
i=1
N N
—MZ=3 mz  my+3 my,
i=1 i=1
0 —mpi—imixi
i=1
mpx+imxl 0
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N
_mpy_zmyi
i=1
N
myX+ " mx,
i=1
N
_Ixy_lxz_Z:lmXiZi
N
—l, =2 myz
i=1

lzz+imyi2
i=1




MATHEMATICA CODE FOR FORCED VIBRATION ANALYSIS

ClearAll;
(*input*)
fslx = 7.071,;
fsly=-7.071,
fs2y=-10;
tf=1.5;

wll =5.99;
wl2 =12.08;
wl3 =16.45;
wl4 = 35.00;
wl5=43.12;
wl6 = 47.08;
wl7 = 75.0;
w21=11.09;
w22 = 21.77,
w23 = 24.88;
w24 = 32.76;
w25 = 41.99;
w26 = 47.93;
w27 = 60.22;
(*Stiffness Terms?*)
0=0.0007812;

[3=0.0007812;
k1=115*12;
(*k1=1612.5
k2=1612.5
k3=1612.5
k4=1612.5%)
k3=120*12;
k2=110*12;
k4=105*12;
(*k1=105*12;
k2=125*12;
k3=110*12;
k4=115*12;%)
ksl = 3689.27;
ks2=3689.27;
mp=4.658;
ma=0.155;(*m1%*)
mj=0.078;(*m2%)
ml= 0.100;(*m3%*)
ml2=0.233;(*m4*)
mts1= 0.086335;
mts2= 0.086335;

APPENDIX B1
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mbsi1= 0.098447;
mbs2=0.098447,
(*mp=1.310488015;*)
mtotal=ma+mj+ml+ml2+mtsl1+mts2+mbsl+mbs2+mp;
(*xI=0.0;

zl = 0.0;

yl=0.0;

xl2 =0.0;

zI2 = 0.0;

yl2 =0.0;

xa =0.0;

za = 0.0;

ya = 0.0;

xj =0.0;

zj=0.0;

yj =0.0;%)

Xl = -15/12; (*(6/7)*(1/2)*Iplate;*)
zl = -15/12; (*(6/7)*(1/2)*wplate;*)
yl= (1/2)*hplate+0.333;

XI2 = 6/12; (*(6/7)*(1/2)*Iplate;*)
zI2 = -6/12; (*(6/7)*(1/2)*wplate;*)
yl2 = (1/2)*hplate+0.333;

xa =9/12;

za = 9/12;

ya = (1/2)*hplate+0.333;

Xj =-12/12;

z) =12/12;

yj = (1/2)*hplate+0.333;

xs1 =0; (*(6/7)*(1/2)*Iplate;*)
zsl =-(2/7)*(1/2)*wplate;
ysl =(1/2)*hplate+0.333;

xs2 = -(2/7)*(1/12)*Iplate;
zs2 =0
ys2 =(1/2)*hplate+0.333;

xbs1 =0; (*(6/7)*(1/2)*Iplate;*)
zbsl =-(2/7)*(1/2)*wplate;
ybsl1 =(1/2)*hplate;

xbs2 =-(2/7)*(1/2)*Iplate;
zbs2 =0
ybs2 =(1/2)*hplate;

Iplate=36/12;

wplate=36/12;

hplate = 2/12;

Ixx =(mp/12)*(Iplate”2+hplate”2);
Izz = (mp/12)*(wplate”2+hplate”2);
lyy = (mp/12)*(Iplate”2+wplate”2);
Ixz = 0;

Ixy = 0;
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lyz = 0;

zbar = 0;

xbar = 0;

ybar = 0;
Ispring=17.25/12;
wspring = 17.25/12;
hspring = (1/2)*hplate;

z1 = Ispring;

y1l =-hspring;

x1 = wspring;

z2 = Ispring;

y2 = -hspring;

X2 = -wspring;

z3 = -Ispring;

y3 = -hspring;

X3 = -wspring;

z4 = -Ispring;

y4 = -hspring;

x4 = wspring;

position={us1[t],vs1[t],vs2[t],u0[t],vO[t],wO[t], ox[t], Oy[t], ozt
I

velocity={us1'[t],vs1'[t],vs2'[t],u0'[t],vO'[t], wO'[t], Ox'[t], oy’
[t 6zt

acceleration={us1"[t],vs1"[t],vs2"[t],u0"[t],vO"[t],wO"[t],
Ox'[t],  Oy"[tl,  6z"[t];

(*force={fs1x*Sin[ wl*t],fs1y*Sin[ wl*t],fs2y*Sin[ w2*t],fs2z*Sin[ w
2*1],0,0,0,0,0,0};*)

F={fs1x*(Sin[ W11*t]+Sin[  w12*]+Sin[  W13*t]+Sin[  Wl14*]+Sin[  Wl15*t]+
Sin[ wl6*t]+Sin[  wl7*t]),fsly*(Sin[ Wl1*t]+Sin[  wl2*]+Sin[  W13*t]+Si
N[ wld*tl+Sin[  wl5*]+Sin[  Wl6*t]+Sin[  wl7*t]),fs2y*(Sin[ wW21*t]+Sin[
oo22*t]+Si?[ W23*t]+Sin[  w24*t]+Sin[  wW25*t]+Sin[  W26*t]+Sin[  W27*t]),0
,0,0,0,0,0

B={{1,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},{0,0,1,0
,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0
0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0, {

,0,0,0}};

KE1=(1/2)*mts1*((us1'[t])"2+(vs1'[t])"2);
KE2=(1/2)*mts2*((vs2'[t])"2);

(* Kinetic Energy of the Moving Masses of Actuators*)

o
o
o
L2

(* Potential Energy of the Springs Attached to Actuato rs*)
PE1=(ks1/2)*((us1[t]-(uO[t]+zs1* Oy[t]-ys1* 0z[t])) 2+(vs1[t]-
(vO[t]-zs1* Ox[t]+xs1*  0z[t]))*2+(wO[t]-xs1* Oy[t]+ys1*  Ox[t])"2);
PE2=(ks2/2)*((uO[t]+zs2* Oy[t]-ys2*  Oz[t])*2+(vs2[t]-(vOlt]-

zs2* Ox[t]+xs2*  0z[t]))*2+((wO[t]-xs2* Oy[t]+ys2*  Ox[t]))"2);

(* Potential Energy of the Springs Attached to Actuato rs*)
(* Potential Energy of the Springs Attached to Actuato rs*)
RD21=(cs1/2)*((usl1'[t]-(uO'[t]+zs1* oy'[t]-y1* 0z'[t]))"2+(vs1'[t]-

(VvO'[t]-zs1* Ox'[t]+xs1* 0z'[t])) 2+(wO'[t]-
xsl* Oy'[t]+ysl* ox'[t])"2);
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RD2=(cs2/2)*((uO'[t]+zs2* oy'[t]-ys2* 0z'[t])"2+(vs2'[t]-(vO'[t]-

zs2* OX'[t]+xs2* 0z'[t]))"2+((wO'[t]-xs2* oy'[t]+ys2* ox'[t])"2);

(* Potential Energy of the Springs Attached to Actuato rs*)

KES(ml/2)*((u0'[t]+zI* oy'[t]-yl* 0z'[t])"2+(vO'[t]-

zI* OX'[t]+xI* 0z'[t])"2+(wO'[t]-xI* oy'[t]+yl* ox'[t)"2)+
(mI2/2)*((uO'[t]+zl2* oy'[t]-yl2* 0z'[t])"2+(vO'[t]-

zI2*  OX'[t]+xI2* 0z'[t])"2+(wO'[t]-xI2* oy'[t]+yl2* ox'[t)"2)+
(mj/2)*((uO't]+zj* By'[t]-yj* 0z[t])"2+(vO'[t]-

zj* OXt+xj*  8z'Tt])"2+(wO'[t]-xj* Oy Ttl+yj*  OxT)"2)+
(ma/2)*((uO'[t]+za* oy'[t]-ya* 0z'[t])2+(vO'[t]-

za* OxX'[t]+xa*  0z'[t])"2+(wO'[t]-xa* oy'[tl+ya*  Ox[t])"2)+
(mbs1/2)*((u0'[t]+zbs1* Oy'[t]-ybs1* 0z'[t])"2+(vO'[t]-

zbsl* Ox'[t]+xbs1* 0z'[t])"2+(wO'[t]-xbs1* Oy'[t]+ybs1* ox'[t)"2)+
(mbs2/2)*((u0'[t]+zbs2* Oy'[t]-ybs2* 0z'[t])"2+(vO'[t]-

zbs2* Ox'[t]+xbs2* 0z'[t])"2+(wO'[t]-xbs2* Oy'[t]+ybs1* ox'[t)"2)+

(mp/2)*((UOtD 2+ (VO'[t]) 2+(WO'[t])*2)+mp*xbar*(vO'[t]* 0z'[t]-
wO'[t]*  8y'[t])+mp*zbar*(uO'[t]* ey'[t]-

VOt ex'[t])+(21/2)*(lyy*( By '[t]) 2+ 1Ixx*( Ox'[t])"2+1zz*( ez'[th"
2)-Ixz*  Oxt]*  6z'[t];

PE=(k1/2)*((uO[t]+z1* Oy[tl-yl*  Oz[t])*2+(vO[t]-

z1* Ox[t]+x1*  Oz[t])"2+(wOlt]-

x1* Qy[t]+yl*  Ox[t])"2)+(k2/2)*((uO[t]+z2* Oy[t]l-y2*  Oz[t])*2+(vO[t]-
z2* Ox[t]+x2*  Oz[t])"2+(wO[t]-

x2* Qy[t]+y2*  Ox[t])"2)+(k3/2)*((uO[t]+z3* Oy[t]-y3*  Oz[t])*2+(vO[t]-
z3* Ox[t]+x3*  Oz[t])"2+(wO[t]-

x3* Qy[t]+y3*  Ox[t])"2)+(k4/2)*((uO[t]+z4* Oy[t]l-yd*  Oz[t])*2+(vO[t]-
z4* Ox[t]+x4*  Oz[t])"2+(wO[t]-x4* oy[t]l+y4*  Ox[t])"2);

(* Potential Energy of the Springs Attached to Plate*)

(* Rayleigh Dissipation Energy of the Dampers Attached to Plate*)

RD=(c1/2)*((uO'[t]+z1* o'y[t]-y1* 0z'[t])2+(vO'[t]-

z1* Ox'[t]+x1*  0z'[t])"2+(wO'[t]-

x1* Qy'[t]+yl*  Ox'[t])"2)+(c2/2)*((uO'[t]+z2* oy'[t]-
y2* Qz'[t])"2+(vO'[t]-z2* ox'[t]+x2*  0z'[t])"2+(wO'[t]-
x2* Qy'[t]+y2*  OX'[t])"2)+(c3/2)*((uO'[t]+z3* oy'[t]-
y3* 0z'[t])"2+(vO'[t]-z3* Ox'[t]+x3*  0z'[t])"2+(wO'[t]-
x3* Qy'[t]+y3*  OX'[t])"2)+(c4/2)*((uO'[t]+z4* oy'[t]-
ya4* 9z'[t]))"2+(vO'[t]-z4* ox'[t]+x4*  0z'[t])"2+(wO'[t]-
x4* Qy'[t]+yd*  OxX[t)"2);
eqn[i_]:=D[D[(KE1+KE2+KE),velocity[[i]]].t]-
D[(KE1+KE2+KE),position[[i]]]+D[(RD1+RD2+RD),velocity[[i]]]+D[(PE
1+PE2+PE),position[[i]]];
Stiffness=Table[Coefficient[eqn[j],position[[K]]],{k,9}.{j,9}];
Mass=Table[Coefficient[eqn[j],acceleration[[K]]],{k,9},{j.9}];
Damping=Table[ a*Mass[[j,k]]+ p*Stiffness[j,K]],{k,9}.{i,9};



L=Chop[CholeskyDecomposition[Mass]];
MD21=Inverse[Transpose[L]].Mass.Inverse[L];
KD1=Inverse[Transpose[L]].Stiffness.Inverse[L];
CD1=Inverse[Transpose[L]].Damping.Inverse[L];
FD1=Chopl[Inverse[Transpose[L]].F];
vecs=Chop|[Eigenvectors[KD1]];
P=Transpose[vecs];

Ptranspose = vecs;

S=Inversel[L].P;

KD2 =Chop[Ptranspose.KD1.P];

MatrixForm[%];

MD2 =Chop[Ptranspose.MD1.P];

MatrixForm[%];

CD2 =Chop[Ptranspose.CD1.P];

MatrixForm[%];

FD2=Chop[Simplify[Ptranspose.FD1]]

MatrixForm[%];

particularl1=Table[Coefficient[FD2[[j]],Sin[ w11*t]],{j,9};
particularl2=Table[Coefficient[FD2[[j]],Sin[ w12*t]],{j,9};
particularl3=Table[Coefficient[FD2[[j]],Sin[ w13*t]],{j,9};
particularl4=Table[Coefficient[FD2[[j]],Sin[ w14*t]].{j,9};
particularl5=Table[Coefficient[FD2[[j]],Sin[ w15*t]],{j,9};
particularl6=Table[Coefficient[FD2[[j]],Sin[ w16*t]],{j,9};
particularl7=Table[Coefficient[FD2[[j]],Sin[ w17*t]1,{j,9};
MatrixForm[%];

particular21=Table[Coefficient[FD2[[j]],Sin[ w21*t]],{j,9};
particular22=Table[Coefficient[FD2[[j]],Sin[ w22*]1,{j,9};
particular23=Table[Coefficient[FD2[[j]],Sin[ w23*t]1,{j,9};
particular24=Table[Coefficient[FD2[[j]],Sin[ w24*1]],{j,9};
particular25=Table[Coefficient[FD2[[j]],Sin[ w25*t]1,{j,9};
particular26=Table[Coefficient[FD2[[j]],Sin[ w26*t]],{j,9};
particular27=Table[Coefficient[FD2[[j]],Sin[ w27*]],{j,9};
MatrixForm[%];

vals=Chop|[Eigenvalues[KD1]];

wn=Sqrt[vals];

=(a/(2* wn))+( B*wn)/2;

wd=Table[ wn[[j]]*Sqrt[1- ¢(011.4,93;
fn=Sqrt[vals]/(2*Pi);

fd= wd/(2*Pi);

{23.71629340343848" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
)+12.176380963697648" (Sin[5.99 t]+Sin[12.08" t]+Sin[16.45
+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+Sin[75.
),0.47429779935456384" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
)+28.545273262255563" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45
+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+Sin[75." t]),-
23.912619107296337 (Sin[11.09 t]+Sin[21.77" t]+Sin[24.88"
t]+Sin[32.76 t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
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t])+13.049440953020028" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45"
t]+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+Sin[75." t]),-
0.055967219247049844" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
t]+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22" t])-
1.511881440302727" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45"
+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+Sin[75."
),2.2775481852129817" (Sin[11.09" t]+Sin[21.77 t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22" t])-
.8192557459641425" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45"
+Sin[35." f]+Sin[43.12" t]+Sin[47.08" t]+Sin[75."
),0.31869739985449297" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22" t])-
0.08118442721821306° (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45"
t]+Sin[35." t]+Sin[43.12" t|+Sin[47.08" t]+Sin[75." t]),-
0.1684652471422208" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
)+0.828263591485338" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45
+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+Sin[75."
),0.23605585449666983" (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
)+3.008949946399901" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45"
+Sin[35." f]+Sin[43.12" t]+Sin[47.08" t]+Sin[75.
),4.289741825716503 (Sin[11.09" t]+Sin[21.77" t]+Sin[24.88"
+Sin[32.76" t]+Sin[41.99" t]+Sin[47.93" t]+Sin[60.22"
)+3.087057744212988" (Sin[5.99" t]+Sin[12.08" t]+Sin[16.45
+Sin[35." t]+Sin[43.12" t]+Sin[47.08" t]+SIn[75." t])}
(*Displacement Solution - Each solution will be a superposition
of two solutions because od the two forcing functions*)

X11=Table[particularl1[[n]]/Sqrt[( on[[n]]*2-
wl1"2)"2+(2*  L[[n]I*  wn[[n]]*  «l11)"2],{n,1,9}];
011=Table[ArcTan[(2* n]]* own[[n]]* wll1)/( wn[[n]]*2-
w11"2)],{n,1,9}];

X12=Table[particular12[[n]}/Sqrt[( wn[[n]]*2-
wl2"2)"2+(2*  [[n]]*  wn[[n]]*  w12)"2]{n,1,9}];
012=Table[ArcTan[(2* In]I*  own[[n]]* w12)/( wn[[n]]*2-
wl272)],{n,1,9};

X13=Table[particular13[[n]]/Sqrt[( on[[n]]*2-
wl3"2)"2+(2*  L[[n]I*  wn[[n]]*  ®13)"2],{n,1,9}];
013=Table[ArcTan[(2* n]]* own[[n]]* w13)/( wn[[n]]*2-
w13"2)],{n,1,9}];

X14=Table[particular14[[n]]/Sqrt[( on[[n]]*2-
wl4"2)"2+(2*  [[n]]*  wn[[n]]*  w14)*2]{n,1,9}];
014=Table[ArcTan[(2* In]I*  own[[n]]* wl4)/( wn[[n]]*2-
wl4”2)],{n,1,9}];

X15=Table[particular15[[n]}/Sqrt[( wn[[n]]*2-
wl5"2)"2+(2*  L[[n]I*  wn[[n]]*  ®15)"2],{n,1,9}];
015=Table[ArcTan[(2* [n]]* own[[n]]* w15)/( wn[[n]]*2-
w15"2)],{n,1,9}];
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X16=Table[particularl6[[n]}/Sqrt[(
wl16°2)"2+(2*  {[[n]]*  wn[[n]]*
016=Table[ArcTan[(2* [[n]]*
w16”2)],{n,1,9}];
X17=Table[particularl7[[n]}/Sqrt[(
wl772)"2+(2*  [[n]I*  wn[[n]]*
017=Table[ArcTan[(2* ¢[[n]]*
wl772)],{n,1,9}];
X21=Table[particular21[[n]}/Sqrt[(
w2172)"2+(2*  [[n]]*  wn[[n]]*
021=Table[ArcTan[(2* ¢[[n]]*
w21"2)],{n,1,9}];
X22=Table[particular22[[n]}/Sqrt[(
w22r22+(2*  {n]*  wn{in]l*
022=Table[ArcTan[(2* [[n]]*
w22"2)],{n,1,9}];
X23=Table[particular23[[n]}/Sqrt[(
w23"2)"2+(2*  {[[n]]*  wn[[n]]*
023=Table[ArcTan[(2* [[n]]*
w23"2)],{n,1,9}];
X24=Table[particular24[[n]}/Sqrt[(
w24"2)"2+(2*  L[[n]I*  wn[[n]]*
024=Table[ArcTan[(2* ¢[[n]]*
w24°2)],{n,1,9}];
X25=Table[particular25[[n]}/Sqrt[(
w25"2)"2+(2*  {[[n]]*  wn[[n]]*
025=Table[ArcTan[(2* [[n]]*
w25"2)],{n,1,9}];
X26=Table[particular26[[n]}/Sqrt[(
w26°2)"2+(2*  L[[n]I*  wn[[n]]*
026=Table[ArcTan[(2* [[n]]*
w26"2)],{n,1,9}];
X27=Table[particular27[[n]}/Sqrt[(
w27°2)"2+(2*  {[[n]]*  wn[[n]]*
027=Table[ArcTan[(2* [[n]]*
w27"2)],{n,1,9};
rxp=Chop[Table[X11[[K]]*Sin[
12[[k]1]+

X13[KF*Sin[  wl3*+ O13[[K][]+X14[K]*Sin[
I*Sin[  wl5*+ B815[[K]]+X16[[K]J*Sin]

[ wl7*t+ B17[[K]]]+
+X21[[K]]*Sin[

wn[[n]]"2-
w16)"2],{n,1,9}];
wn[[n]]*  w16)/(  wn[[n]]"2-

wn([n]}"2-
wl7)"2],{n,1,9};
an[[n]I*  @l7)/( wn[[n]]"2-

wn([n]}"2-
w21)"2]{n,1,9};
wnf[n]*  w21)/( wn[[n]]"2-

wn[[n]]"2-
w22)"2],{n,1,9}];
wn[[n]]*  w22)/( wn[[n]]"2-

wn([n]}"2-
w23)"2]{n,1,9};
wnl[n]*  w23)/( wn[[n]]"2-

wn[[n]]"2-
w24)"2],{n,1,9}];
wn[[n]]*  w24)/( wn[[n]]"2-

an[[n]}*2-
w25)"2],{n,1,9}];
wn[[n]*  w25)/( wn[[n]]"2-

wn[[n]]"2-
w26)"2],{n,1,9}];
on[[n]]*  w26)/( wn[[n]]"2-

an[[n]}*2-
w27)*2],{n,1,9}];
wn[[n]*  w27)/( wn[[n]]"2-

wll*t+ OLL[K]+XL2[K]*Sin[

w21*t+ B21[[K]]+X22[[K]]*Sin]

wld*t+ B1A[[K]]+X 15[k
wl6*t+ B16[K]+X17[K]*Sin

w22*t+ B22[[K]]]+
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wl2*t+ 0



X23[[K]]*Sin[
II*Sin[  w25*t+ 025[[K]]]+X26[[K]]*Sin[
[ w27*t+ 627[[K]]].{k,1,9}];
Sinverse=Ptranspose.L;

xx=Chop[S.rxp];
us11=xx[[1]];
vs11=xx[[2]];
vs22=xx[[3]];

w23*t+ B23[[K]]]+X24[[K]J*Sin[
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w24*t+ B24[[K]]]+X25[[k
w26*t+ B26[[K][[+X27[[K]*Sin

uO=xx[[4]];

vO=xx[[5]];

wO=xx[[6]];

=xx([7]];

@y=xx[[8]];

q=xx[[9]];

plotfs1x=Plot[F[[1]],{t,0,tf},PlotStyle - Thin,PlotRange - All,Plot
Label - Subscript["F",1],AxesLabel -{secs,Ib}];
plotfsly=Plot[F[[3]],{t,0,tf},PlotStyle - Thin,PlotRange - All,Plot
Label - Subscript['F",2],AxesLabel —{secs,Ib}];
plotfs2y=Plot[F[[3]],{t,0,tf},PlotStyle - Thin,PlotRange S All]
Show[plotfs1x,plotfsly,plotfs2y]

plotu0=Plot[u0,{t,0,tf},PlotStyle - Thin,PlotRange - All,PlotLabel -
Subscript[u,0],AxesLabel -{secs,ft}]

plotvO=Plot[vO,{t,0,tf},PlotStyle - Thin,PlotRange-

>All,PlotLabel - Subscript[v,0],AxesLabel -{secs,ft}]
plotwO=Plot[wO,{t,0,tf},PlotStyle - Thin,PlotRange - All,PlotLabel -
Subscript[w,0],AxesLabel -{secs,ft}]

plot @=Plot[ @x.({t,0,tf},PlotStyle - Thin,PlotRange - All,PlotLabel -
Subscript]  0,x],AxesLabel —{secs,rads}|;

plot @=Plot[ qy.{t,0,tf},PlotStyle - Thin,PlotRange - All,PlotLabel -
Subscript[  0,y],AxesLabel —{secs,rads}|;

plot @=Plot[ qe,{t,0,tf},PlotStyle - Thin,PlotRange - All,PlotLabel -
Subscript[  0,z],AxesLabel —{secs,rads}|;

Show[GraphicsArray[{{plotu0,plot
z}}1]

@}, {plotvO,plot

oy}, {plotwO,plot (0}



